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Final Report: DURIP equipment grant 
	
  
Our final goal from this project is to realize on-demand single- and multi-photon sources 
that are key resources for quantum communication and computation technology; we have 
made significant progress toward that goal under this DURIP grant. In order to efficiently 
overcome the probabilistic generation of heralded photons via spontaneous parametric 
down-conversion (SPDC), and to realize an on-demand single-photon source, a time-
multiplexed heralded single-photon source was proposed by Pittman, Jacobs, and Franson 
[1] in 2002. In this project, we have extended and implemented a time-multiplexed 
heralded single-photon source with a low-loss and high-speed optical storage system [2]. 
We have observed that our preliminary implementation with our current existing SPDC 
source outperforms all previous demonstrations of heralded single-photon sources. 
Moreover, we have made substantial progress in our efforts to optimize a SPDC photon-
pair source for time multiplexing, accounting theoretical and practical aspects [3]. Details 
of our activities are described as below.  
 
Time-Multiplexed Single-Photon Source 
The basic idea of our scheme is shown in Fig. 1 (a,b).  An optical-pulse train from a laser 
periodically pumps a nonlinear SPDC crystal with a period τ, and generates photon pairs 
(i.e., signal and idler photons) in one or more time slots. Each signal photon is sent to a 
single-photon detector (SPD) by which the photon detection “heralds” in which time slot 
the corresponding idler photon is present. By using an adjustable storage cavity with 
cavity length τ, any of the time slots heralded to contain an idler photon can be 
multiplexed onto a single output time window. Thus, the single-photon probability during 
the output time window is increased according to the number of pump pulses (time slots) 
N used for one cycle of the multiplexing; in a lossless system this probability can be 
made arbitrarily close to 1.  Moreover, if N is large, the probability of generating 
unwanted multiple pairs in a given time slot can be made arbitrarily small, because the 
pump energy is “diluted” over the N time slots.  
    Using the equipment from this DURIP grant, we have implemented our proposed time-
multiplexed heralded single-photon source (see Fig. 1 (c) [2]). Our existing SPDC source 
with a bismuth barium borate (BiBO) crystal produced degenerate signal and idler pairs 
with very high heralding efficiency (up to 75 - 81% [4]). We used a custom Brewster-
angle polarizing beamsplitter (PBS1) and Pockels cell (PC), which achieve high-speed (< 
5 ns) very low- loss (< 3 %) switching in an adjustable storage cavity. In addition, 
incorporating a low-loss (< 15%) optical delay line including a Herriott cell allows us to 
store/release a heralded single photon generated in the closest time slots to an output time 
window, thereby reducing the effective number of storage cycles and associated optical 
loss.  
    This preliminary implementation of a multiplexed source demonstrated largely 
enhanced single-photon probabilities: for high power pumping (mean photon number per 
time slot p = 0.35) we have observed a multiplexed single-photon probability PM1 = 
38.6% (see blue dots in Fig. 1 (c)) by multiplexing N = 30, corresponding to ~6×	
 
enhancement in PM1 compared to the non-multiplexed source (PM1 = 6.6% for N = 1). 
With a low pump power (p ~0.07), we observed ~16× increase in the single-photon 
probability by multiplexing N = 30 (see green squares in Fig. 1 (d)). While the single-



photon probability is greatly enhanced by the multiplexing, the second-order correlation 
function g(2)(τ = 0) of the multiplexed source is as low as the non-multiplexed one (Fig. 1 

(e)): the ratio of the two- and single-photon probabilities PM2/PM1 is independent of N. To 
our knowledge, these single-photon probabilities and enhancement factors are 
significantly higher than all previous demonstrations of heralded single photons. 
Moreover, we found that the low-loss high-speed optical switching technique developed 
in this experiment can be applied for “time demultiplexing” of photons: sequentially 
produced photons can be efficiently distributed to different channels of a photonic circuit 
for quantum computational applications such as linear optical quantum computing, 
quantum walks, and boson sampling.  
 
Optimizing Heralded Single-Photon Source 
Although our current time-multiplexed heralded single-photon source already 
outperforms all other heralded single-photon sources, many quantum information 
applications using a large number of quanta require even higher generation efficiencies (> 
70%), in addition to high purity and indistinguishability to utilize multi-photon 
interference effects. In order to develop an optimized heralded single-photon source, we 

Fig. 1. (a) Simplified schematic diagram of a time-multiplexed heralded single-photon source. (b) 
Timing diagram of pump, signal, and idler photons. (c) Experimental setup of our prototype time-
multiplexed source. (d) Single-photon probability and (e) the second-order correlation function 
g(2)( τ = 0) versus number of multiplexed time slots N.  Blue circles: p = 0.35. Green squares: p = 
0.07. Solid and dashed lines in (d) show theoretical predictions for p = 0.35 and 0.07, accounting 
loss of experimental components. Solid and dashed lines in (e) indicate the values of g(2)(τ = 0) 
measured without multiplexing (N = 1) for p = 0.35 and 0.07.  
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have made experimental and theoretical characterizations of photon pair sources. Our 
first attempt used SPDC from a non-collinear phase-matched beta-barium borate (BBO) 
crystal with group-velocity-matching (GVM) as a potential source of the high-quality 
heralded single photons. Although we measured a high spectral purity (> 80%) by various 
characterization techniques [3], theoretical calculations with the help of Alfred U’Ren in 
Universidad Nacional Autonoma de Mexico, subsequently revealed that it is difficult to 
achieve both high spectral purity and high heralding efficiency with this scheme: a tightly 
focused pump beam (beam waist ~30 µm) is necessary to obtain high spectral purity, but 
limits spatial mode correlation and heralding efficiency (~20%). Moreover, the short-
pulse duration (Δt ~30 fs) of the heralded single-photon state would necessitate the 
storage cavity to have very precisely controlled chromatic dispersion and cavity length.  

    In order to improve the single-photon probability, to further suppress the multi-photon 
probability, and to obtain pure single-photon states, we designed a new photon pair 
source for heralded single photons (see Fig. 2 (a)). A 20-mm-long periodically poled 
potassium titanyl phosphate (PPKTP) crystal is pumped by a short pulse (Δt ~200 fs1) 
centered at 532 nm, and collinearly generates signal and idler photons at 800 nm and 
1590 nm, respectively. In this configuration, pump and signal modes have the same group 
velocity (i.e., satisfying GVM), and frequency entanglement between signal and idler 
photons is nearly eliminated: the predicted two-photon joint spectral amplitude (Fig. 2 
(b)) clearly shows the factorability of the two-photon state. We have measured single-
photon purity up to 90%, much better than the 5% of the source used thus far in our time-
multiplexed source (Fig. 1), and sufficient for our purposes.  
    Aside from satisfying group-velocity matching, the center wavelengths of the signal 
and idler photons are desirable for the following reasons: The photon centered at 800 nm 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  Unfortunately, the pulses from our previous source laser were an order of magnitude too short for this 
source; also, our other existing pump sources had pulses that were in fact too long for the proposed source. 
The primary use of this DURIP Equipment fund was to acquire a new optimal pulsed pump laser.	
  

Fig. 2. (a) Schematic diagram of nondegenerate collinear SPDC with a PPKTP crystal. (b) Predicted 
joint spectral amplitude of signal and idler photons. (c) Predicted heralding efficiency as a function of 
collection beam waist of photons.  
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is excellent for heralding the idler photon, since the wavelength is in the region of high 
sensitivities for commercial Si-APD (which has now demonstrated efficiencies above 
85%) as well as Visible Light Photon Counters (VLPCs) [5].  
    The photon at 1590 nm is optimal for both storing in the cavity and maintaining high 
purity, because the group-velocity dispersion of the storage cavity (~0.0008 ps2 per cycle) 
can be much lower than it would be in our current cavity, operating at a wavelength of 
710 nm (corresponding to ~0.01 ps2 per cycle)2, and because the 1590-nm photon is 
generated with a very narrow bandwidth  (Δλ ~1 nm, Δt ∼ 3 ps), which makes it highly 
robust against chromatic dispersion in the storage cavity. Combined with a low-
dispersion storage cavity, the photon’s purity should be reduced less than 1% even for N 

= 100 cycles.  
    Incorporating all these improvements, we expect a final single-photon probability up to 
83%, with a g(2)

  as low as 0.05 (see Fig. 3). Note that there is always a trade-off between 
these metrics, as indicated in Fig. 3 (b). Given an expected source efficiency of 0.8 and a 
source repetition rate of 1MHz (achieved by using a much faster PC driver than in our 
previous experiment), we can estimate the production rate of N-photon events P(N) = 
0.8N x (1 MHz). As shown in Fig. 4, we can produce 8-photon events at 170,000/s 
(compared to ~0.5/s, the best result to date), even 50-photon events at 14/s (though these 
numbers do not include the detection efficincy for these photons).	
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Fig. 3. Predicted performance of our proposed multiplexed heralded single-photon source. (a) Final 
single-photon probability vs N for single-pulse pair-production probability p = 0.18. (b) g(2)(0) vs 
single-photon probability parameterized by p. Blue lines and dots were obtained in our past 
experiment (see Fig. 1), while black lines are the predicted performance of our proposed source.  

(b) (a) 

Fig. 4. (a) Predicted performance of our feasible source for N-photon state generations. 
(b) Enlarged version at low generation rates/probabilities.  
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